
 

 
Feasibility Studies of New High Altitude Electromagnetic 

Pulse Test Materials 
 

by Max Polun 
 

ARL-TR-3677 November 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution unlimited.   



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 

 



 

Army Research Laboratory 
Adelphi, MD 20783-1197 
 

ARL-TR-3677 November 2005 
 
 
 
 

Feasibility Studies of New High Altitude Electromagnetic 
Pulse Test Materials 

 
Max Polun 

Sensors and Electron Devices Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution unlimited.   

 



 ii 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 
OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

November 2005 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

May 2005 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 

4. TITLE AND SUBTITLE 

Feasibility Studies of New High Altitude Electromagnetic Pulse Test Materials 

5c. PROGRAM ELEMENT NUMBER 

 
5d. PROJECT NUMBER 

5NY1YY 
5e. TASK NUMBER 

 

6. AUTHOR(S) 

Max Polun 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN: AMSRD-ARL-SE-DE 
2800 Powder Mill Road 
Adelphi, MD 20783-1197 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
ARL-TR-3677 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
2800 Powder Mill Road 
Adelphi, MD 20783-1197 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 

The danger of a high-altitude electromagnetic pulse (HEMP) is one of many threats that an Army facility must be capable of 
surviving. A standard method of testing the HEMP survivability of these facilities exists.  However, it is not capable of being 
used in all situations.  This feasibility study used a series of experimental test methods and unique antenna designs to evaluate 
more flexible methods. The findings indicate that several of the antennae tested have suitable dynamic range characteristics and 
that alternative system designs can be employed where space limitations and other factors preclude use of the standard method. 

 

15. SUBJECT TERMS 

HEMP hardening, antenna, fiber-optic 

16.  SECURITY CLASSIFICATION OF: 
19a.  NAME OF RESPONSIBLE PERSON 
Max  Polun 

a.  REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 

17.  LIMITATION
OF 
ABSTRACT 

UL 

18. NUMBER 
OF PAGES 

 
42 19b. TELEPHONE NUMBER (Include area code) 

(301) 394-2016 
 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18 



Contents 

List of Figures iv 

List of Tables v 

Background 1 

Test Approach 1 

Antenna Factors 3 

The Measured Data 6 

Conclusions 22 

Distribution 27 

 iii



List of Figures 

Figure 1.  Single fiber-optic measurement approach. ......................................................................2 
Figure 2. Multi-fiber-optic measurement approach. ........................................................................3 
Figure 3.  Rough spiral design – for fabrication. .............................................................................4 
Figure 4.  Scale model facility test bed............................................................................................5 
Figure 5.  Antenna test set-up polarizations.....................................................................................6 
Figure 6.  Andrews and bi-logic; parallel orientation. .....................................................................7 
Figure 7.  Andrews and bi-logic; perpendicular orientation. ...........................................................7 
Figure 8. Andrews and bi-logic; parallel orientation. ......................................................................8 
Figure 9.  Andrews and bi-logic; perpendicular orientation. ...........................................................8 
Figure 10.  Andrews and loop; parallel orientation. ........................................................................9 
Figure 11. Andrews and loop; perpendicular orientation. ...............................................................9 
Figure 12. Andrews and bi-logic; parallel orientation. ..................................................................10 
Figure 13.  Andrews and loop; perpendicular orientation. ............................................................10 
Figure 14.  TMS and bi-logic; parallel orientation. .......................................................................11 
Figure 15.  TMS and bi-logic; perpendicular orientation. .............................................................11 
Figure 16.  TMS and loop; parallel orientation..............................................................................12 
Figure 17.  TMS and loop; perpendicular orientation....................................................................12 
Figure 18.  TMS and loop; parallel orientation..............................................................................13 
Figure 19.  TMS and loop; perpendicular orientation....................................................................13 
Figure 20.  Bi-logic and bi-logic; parallel orientation. ..................................................................14 
Figure 21.  Bi-logic and bi-logic; perpendicular orientation. ........................................................14 
Figure 22.  Bi-logic and bi-logic; parallel orientation. ..................................................................15 
Figure 23.  Bi-logic and bi-logic; perpendicular orientation. ........................................................15 
Figure 24.  Loop and loop; parallel orientation. ............................................................................16 
Figure 25.  Loop and loop; perpendicular orientation. ..................................................................16 
Figure 26.  Loop and loop; coaxial orientation..............................................................................17 
Figure 27.  Loop and loop; parallel orientation. ............................................................................17 
Figure 28.  Loop and loop; perpendicular orientation. ..................................................................18 
Figure 29.  Loop and loop; coaxial orientation..............................................................................18 
Figure 30.  Spiral and bi-logic. ......................................................................................................19 
Figure 31.  Spiral and bi-logic. ......................................................................................................19 

 iv



Figure 32.  Spiral and loop; coaxial orientation.............................................................................20 
Figure 33.  Spiral and loop; parallel orientation. ...........................................................................20 
Figure 34.  Spiral and loop; coaxial orientation.............................................................................21 
Figure 35.  Spiral and loop; parallel orientation. ...........................................................................21 
Figure 36.  Dynamic range – spiral................................................................................................23 
Figure 37.  Dynamic range – Andrews coax..................................................................................24 
Figure 38.  TMS coax – dynamic range.........................................................................................25 
 

 

List of Tables 

Table 1.  Logarithmic spiral equation..............................................................................................4 
 

 v



 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 

 

 vi



Background 

The danger of a high-altitude electromagnetic pulse (HEMP) is one of many threats that an Army 
facility must be capable of surviving.  To this end the Army has been testing and hardening many 
of their facilities against the electromagnetic environment produced by the detonation of a 
nuclear weapon.  There is a standard method of testing the HEMP hardness of a facility.  
However, it is not capable of being used in all situations, specifically due to space constraints in 
the test geometry. 

A method using a fiber-optic system to electromagnetically isolate both the receiving and the 
transmitting antennae from a network analyzer and amplifier was devised.  Additionally, 
alternative antenna designs were evaluated with a view to minimize physical space requirements 
while, at the same time, maximizing the measurable system bandwidth.  As a result, this 
feasibility study used a series of experimental test methods to evaluate the performance of the 
unique antenna designs in a variety of configurations that could, as a result, offer more flexibility 
and require less physical space than is presently required. 

Test Approach 

The approach measures and compares the difference in power received from a transmission of a 
known signal over a known distance of air and the reduction of signal over a hardened interface.  
There are many ways that this general idea can be implemented, however.  Previous methods 
using a frequency oscillator and spectrum analyzer were used to create the signal and view it.  
This approach is limited in that only a single test frequency can be monitored at a time.  Because 
of the time involved in making such a measurement, this approach usually results in fewer 
frequencies being tested.  

Improvements to this approach can be realized by using a network analyzer to both generate and 
analyze the signal, allowing a whole range of frequencies to be tested in less time than it would 
take to measure a single frequency.  An additional benefit to this approach is that the data 
collected by the network analyzer can be easily transferred to a computer for analysis and 
storage.  One important challenge to this setup is to minimize, or eliminate, electromagnetic 
interference (EMI) between the transmit and receive paths, which could be complicated since the 
network analyzer serves as signal source and receiver.   

In order to be successful, the two network analyzer paths had to be electromagnetically separate 
from each other, yet still allow signal to travel between the two.  Fiber-optic cables and data 
systems are ideal for this situation, as the cables are unaffected by EMI and can support a 
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potentially broad frequency range of data signals and information.  A highly effective test setup 
using a single length of fiber-optic cable with a corresponding transmitter and receiver (shown 
by figure 1) was used.  

 

 

Fiber-optic receiver
Amp 

Network 
analyzer 

Fiber-optic 
Transmitter 

The original test setup 
Transmitting Antenna Receiving Antenna 

Tested material

Figure 1.  Single fiber-optic measurement approach. 

 
This test approach is generally well understood, and can be reliably and accurately performed 
with fewer personnel than the original method using spectrum analyzers.  However, there are 
limitations, based on physical constraints, that can prevent the test from producing measurable 
results.  

One constraint encountered where there is no access port to allow a fiber-optic cable through the 
hardened material to the transmitting antenna.  In this situation, the single frequency oscillator 
and spectrum analyzer method has to be used.  Additionally, in some situations (due to the 
geometry of the location), there may be no way to ensure that the network analyzer is both 
separated from the transmitting antenna and, at the same time, connected to the receiving 
antenna.  In such cases, it is better to separate the network analyzer from both the receiving and 
transmitting antennae than to allow EMI to induce distortions in the signal, and possibly change 
the electromagnetic signature of the system.  

To avoid this, a new setup was assembled and studied.  This approach used two fiber-optic 
systems (figure 2) and each separated section had its own independent and isolated power 
supply.  
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From the outset, it was generally believed that this setup should perform exactly like the original 
and be of more general use than its predecessors.  However, some possible shortfalls were 
anticipated.  For example, if the fiber-optic data systems are the most complicated part of the test 
setup, this new approach would essentially double the complexity of the test.   As another 
example, the multi-fiber-optic system might experience too much unrecoverable signal loss due 
to converting the copper-carried signals to and from fiber-optics.  This would result in the multi-
fiber-optic system having insufficient dynamic range.  As a result, an experiment was in order. 

 

 

Fiber-optic receiver 
Amp 

Network 
analyzer 

Fiber-optic 
Transmitter 

Fiber-optic 
Receiver 

The new test setup 

Fiber-optic 
transmitter 

Transmitting Antenna Receiving Antenna

Tested material

Figure 2. Multi-fiber-optic measurement approach. 

 

Antenna Factors 

In addition to determining the general suitability of this test approach, the other goal was to 
determine what alternative antenna types could be used that had sufficient dynamic range for 
meeting the data measurement requirements and still satisfy a reduced physical size.  In order to 
resolve these questions, we tested a variety of antennae in the test setup.  Among the types of 
receiving antenna used were two types created from slotted coaxial cables and one spiral 
antenna. 

One coaxial antenna was fabricated using a type of cable manufactured by Andrews company.  
This is called “Radiax” and is noted to have reinforcing members and is very sturdy physically.  
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The other was fabricated by Times Microwave Systems (TMS) and was thinner and likely less 
durable.  

The other receiving antenna types used were a wide-band spiral originally designed and 
fabricated at Army Research Laboratory (ARL) and two types of commercial off-the-shelf 
antennae, a loop and a bi-logic.  Design of the spiral was based upon the following criteria: 

Table 1.  Logarithmic spiral equation.  

(In polar coordinates): 
The inner right spiral: r = 0.5 e0.1103*θ

Outer right: r = 0.5 e0.1103* θ + 0.1823

Inner left: r = -0.5 e0.1103* θ

Outer left: r = -0.5 e0.1103* θ + 0.1823

 
The resulting design was used in the fabricating process: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Rough spiral design – for fabrication. 

 
The two types of transmitting antennae used were also the loop and the bi-logic.  (Both loops and 
bi-logic antennae were manufactured by AH Systems).  

The range of test frequencies was from 10 kHz to 1 GHz.  Two network analyzers, both 
manufactured by Hewlett Packard, were used to satisfy the test data range requirements.  One 
model had an operating range from 20 MHz to 3 GHz.  The second network analyzer had an 
operating range from 10 kHz to 20 MHz.  Two separate fiber-optic systems were also used for 
the study.  One was manufactured by the Nanofast company, the other by EOD.  Both fiber-optic 
systems had an effective operating range that included the 10 KHz to 1 GHz requirement. 
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The test was conducted at ARL’s Scale Model Facility, with the network analyzer separated 
from the antennae sufficient distance to ensure no detrimental EMI effects.  The general 
geometry for the tests were as described in figure 4.  All three parts (transmitter, receiver, and 
analyzer) used separate power supplies to avoid any electromagnetic cross-talk.  One used 
commercial power, one used an external generator, and one used a battery.  

Network 
analyzer 

Transmitting 
antenna 

Receiving antenna 

Amp 

Fiber-optic converters not 
shown 

 

Figure 4.  Scale model facility test bed. 

 
The dynamic range of each tests set-up was calculated by taking the power response given by the 
network analyzer, and subtracting out any known attenuations (or amplification) and the 
measured background picked up by the antenna.  The higher the dynamic range, the less power 
was lost in the signal.  Therefore, a high dynamic range was desirable. The IEEE specifications 
were used to identify acceptable dynamic range characteristics.1  

As an end-user requirement, acceptable dynamic range capabilities had to meet, or exceed for 
any given frequency (f), the following: 20*log (f) –62.1 or 80 dB, whichever is lower. 

Different polarities (physical positions) of the transmit and receive antennas were investigated.  
In some cases, these changes were dictated by the geometry of the antennae. Although 
measurements were made using three different polarities, “parallel”, “perpendicular”, and 
“coaxial”, most combinations of antennae only used parallel or perpendicular orientations.  

 “Coaxial” polarization occurs when the planes formed by rotating the antennae intersect each 
other and the intersected area is within the physical area of only one antenna.  This is graphically 
shown in figure 5. 

                                                 
1 IEEE Std. 299-1997: IEEE standard method for measuring the effectiveness of electromagnetic shielding enclosures. 
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Parallel 
Perpendicular 

Coaxial 

Figure 5.  Antenna test set-up polarizations. 

 

The Measured Data 

The data collected for the study is shown in the following plots. 
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Figure 6.  Andrews and bi-logic; parallel orientation. 
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Figure 7.  Andrews and bi-logic; perpendicular orientation. 
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Figure 8. Andrews and bi-logic; parallel orientation. 
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Figure 9.  Andrews and bi-logic; perpendicular orientation. 
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Figure 10.  Andrews and loop; parallel orientation. 
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Figure 11. Andrews and loop; perpendicular orientation. 
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Figure 12. Andrews and bi-logic; parallel orientation. 
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Figure 13.  Andrews and loop; perpendicular orientation. 
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Figure 14.  TMS and bi-logic; parallel orientation. 
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Figure 15.  TMS and bi-logic; perpendicular orientation. 
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Figure 16.  TMS and loop; parallel orientation. 
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Figure 17.  TMS and loop; perpendicular orientation. 
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Figure 18.  TMS and loop; parallel orientation. 
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Figure 19.  TMS and loop; perpendicular orientation. 
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Figure 20.  Bi-logic and bi-logic; parallel orientation. 

 

10
7

10
8

10
9

60

70

80

90

100

110

120

130

140

150

F(Hz )

dB
 

Dynamic range receiver: bi−...−logic, d=10, perpendicular

Dynamic range
minimum nessisary

 

Figure 21.  Bi-logic and bi-logic; perpendicular orientation. 
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Figure 22.  Bi-logic and bi-logic; parallel orientation. 
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Figure 23.  Bi-logic and bi-logic; perpendicular orientation. 
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Figure 24.  Loop and loop; parallel orientation. 

 

10
4

10
5

10
6

10
7

10
8

0

20

40

60

80

100

120

F(Hz )

dB
 

Dynamic range receiver: loop, transmitter: loop, d=10, perpendicular

Dynamic range
spec
minimum nessisary

 

Figure 25.  Loop and loop; perpendicular orientation. 
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Figure 26.  Loop and loop; coaxial orientation. 
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Figure 27.  Loop and loop; parallel orientation. 
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Figure 28.  Loop and loop; perpendicular orientation. 
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Figure 29.  Loop and loop; coaxial orientation. 
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Figure 30.  Spiral and bi-logic. 
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Figure 31.  Spiral and bi-logic. 
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Figure 32.  Spiral and loop; coaxial orientation. 
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Figure 33.  Spiral and loop; parallel orientation. 
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Figure 34.  Spiral and loop; coaxial orientation. 
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Figure 35.  Spiral and loop; parallel orientation. 
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Conclusions 

It appears that at least some combinations of antennae and polarizations have sufficient dynamic 
range to meet the minimum requirements.  A dynamic range of 80 dB or more is recommended 
for higher frequencies, and certainly the bi-logic to bi-logic setup has more than that (in most 
cases a factor of 20 dB or more).  

The spiral antenna results appeared quite promising.  The advantage of the spiral antenna is that 
it would make possible measurements in places where measurements would have previously 
been difficult or impossible.  There are uncertainties about the spiral antenna, however.  The 
uncertainties about the spiral antenna’s data only affects the lower range of frequencies, so as 
long as the antenna is only used to test high frequencies (on the order of 50-1000 MHz) it would 
likely produce acceptable results.  

An advancement on the basic spiral antenna design would be to increase its’ effective length (the 
length of the spirals).  This could be done by fabricating a spiral antenna larger than the one used 
for the laboratory tests.  The result would be in a useable range lower than the 50 MHz noted by 
the data plots. 

A second improvement could possibly be realized through the use of a balun in the spiral 
antenna.  A balun is a balanced load to unbalanced load transformer, and can typically increase 
the capabilities through more efficient electrical loading conditions.   

One additional note is the “dip” in the dynamic range at about 100 MHz, which is caused by the 
characteristic profile of the bi-logic transmitting antenna and so is probably not a problem with 
the spiral itself.  

The spiral’s dynamic range results are as shown in figure 36. 
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Figure 36.  Dynamic range – spiral. 

 
The Andrews Coax does not appear to be suitable as an antenna.  The system was tested twice, 
with the better results shown in figure 37.  Sufficient dynamic range cannot be achieved using 
this cable. 
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Figure 37.  Dynamic range – Andrews coax. 

 
The TMS coax does have sufficient dynamic range in the higher frequencies from about 50 MHz 
to about 500 MHz as shown in figure 38. 
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Figure 38.  TMS coax – dynamic range. 

 
Space permitting, the loop and Bi-logic antennae should be able to act as transmitters over the 
necessary range of frequencies.  When space does not permit the Bi-logic or loop antennae to be 
used, variations of the TMS coax and spiral should perform adequately.  

These new approaches, both single and multi-fiber-optic measurement systems, lend themselves 
to additional improvements and uses.  The spectral characteristics of the antennae may be 
improved so as to increase the overall band-pass characteristics.  Use of a higher power amplifier 
than the 10 watts used could also increase the dynamic range results for a variety of antenna 
combinations.  Follow-on efforts that evaluate the variations and improvements are warranted 
and will be performed in the near-term in other-than-laboratory conditions. 
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